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Electron-density maps are generally prepared by Fourier transforming a set of

complex structure factors. However, a map can also be obtained through a real-

space reconstruction method. Starting from an empty unit cell, the map can be

iteratively modi®ed until it agrees with the given structure factors. In this paper,

a simple method is described for preparing electron-density maps using this

technique and two examples of its application are given.

1. Introduction

In the past, we have described the development of a compu-

tational approach termed the `holographic method' (SzoÈ ke,

1993; Maalouf et al., 1993; Somoza et al., 1995; SzoÈ ke et al.,

1997a,b). The holographic method provides a way of itera-

tively changing an electron-density map until it simultaneously

agrees with both the diffraction data and any available real-

space information.

There are several advantages to creating a map in this way.

The biggest advantage is that this method provides an effec-

tive framework for incorporating real-space information

(positivity, knowledge of the solvent region etc.) into the

calculation of an electron-density map. The real-space infor-

mation is incorporated by directly restraining the electron

density.

Another advantage of the holographic method is that the

resulting maps are less likely to include Fourier artifacts, such

as those that result from an incomplete or truncated data set.

Electron-density maps are usually obtained by Fourier trans-

forming the structure factors. The holographic method, in

contrast, uses a minimization scheme to modify the map until

it agrees with the diffraction data. At each step, structure

factors are calculated from the map and compared to the

observed structure factors. A calculated structure factor for

which there is no corresponding observed structure factor is

simply ignored. Thus, missing diffraction data have a much

smaller impact on the resulting electron density when the

maps are generated by this method than they do in conven-

tional difference Fourier maps.

This paper describes a technique that is a small subset of the

holographic method, and which will be referred to as real-

space reconstruction (RSR). The RSR technique shares some

of the advantages of the holographic method, including the

reduced susceptibility to Fourier artifacts. Starting from an

empty unit cell, we describe a way of iteratively modifying

electron density within the cell until a map is identi®ed that is

consistent with the given structure-factor data.

2. Implementation of the real-space reconstruction
method

The goal of this method is to ®nd the best (and everywhere

non-negative) electron-density map compatible with a given

set of complex structure factors, Fo(h). To implement this

procedure, several things are needed. First, we need a way of

representing arbitrary electron-density maps. Second, we need

a way of evaluating how well the electron density agrees with

Fo(h). Finally, we need a method of changing the map to best

®t the given structure factors.

2.1. Description of the electron-density map as a sum of
Gaussians

The ®rst step in describing the density is to subdivide the

unit cell into a regular grid. At each grid point, rp, a Gaussian

is placed that is described by the expression

��rp� � n�p�����r2�ÿ3=2 exp�ÿjrÿ rpj2=��r2�; �1�

Figure 1
Stereo ®gure showing residues 40±43 of HGXPRTase along with the
corresponding 2Fo ÿ Fc (blue) and RSR (red) electron-density maps.
These maps were prepared after omitting residues 1±50 as well as all of
the solute molecules.



where �r is the mean grid spacing and � (typically 0.8)

speci®es the width of the Gaussian with respect to the grid

spacing. The Gaussians are spherical, of ®xed width, and

contain a variable number of electrons, n(p). The electron

density for the entire unit cell is described by the expression

��r� � ����r2�ÿ3=2
PP
p�1

n�p� exp�ÿjrÿ rpj2=��r2�; �2�

where P is the total number of grid points in the unit cell. It

should be noted that the description of the electron density

depends on the maximum resolution of the data being

modeled. As the maximum resolution increases, the spacing

between adjacent grid points (�r) decreases, as does the width

of each Gaussian.

2.2. The cost function and the minimizer

In order to identify an electron-density map that is consis-

tent with a given set of structure factors, we transform the map

to obtain a set of calculated structure factors, Fc(h), and

compare those structure factors to the Fo(h) using the

following cost function:

fRSR �
P

h

jFo�h� ÿ Fc�h�j2: �3�

The cost function de®ned in (3) is minimized using a conju-

gate-gradient algorithm designed by Goodman et al. (1993).

The map is altered by changing the number of electrons, n(p),

in the Gaussians centered at each point rp until the mini-

mization algorithm converges.

3. Examples

Two examples of using the RSR method to prepare electron-

density maps will be given. In each case, the starting point was

a set of experimentally determined structure-factor ampli-

tudes and a coordinate ®le that partially models the observed

data and that is used to provide phases. For each example, two

types of map were prepared: a sigmaa-weighted 2Fo ÿ Fc map

and a RSR map. In each case, the SFALL program (Colla-

borative Computational Project, Number 4, 1994) was used to

calculate structure factors from the partial model and to place

the Fo's on an (approximately) absolute scale. This was

followed by sigmaa weighting using the SIGMAA program

(Read, 1986). A 2Fo ÿ Fc Fourier map was calculated using

the program FFT (Ten Eyck, 1977). The RSR map was

prepared using the program EDEN (Maalouf et al., 1993;

Somoza et al., 1995; SzoÈ ke et al., 1997a,b).
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Figure 2
Display of the re¯ections in the (a) 0kl and (b) h0l planes of the cathepsin
S data. Note the large wedge of data missing along the l axis.

Figure 3
Stereo ®gure showing the vicinity of the active site cysteine of cathepsin S
(Cys 25), along with the corresponding 2Fo ÿFc (blue) and RSR (red)
electron-density maps. The 2Fo ÿ Fc map shows a break in density for the
sidechain of Cys25, along with several instances of false connectivity. This
region of the RSR map has no breaks in density and fewer instances of
false connectivity. The Z axis roughly coincides with the horizontal axis of
the ®gure.
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HGXPRTase. The ®rst example used diffraction data to

1.9 AÊ resolution that were collected on HGXPRTase (Somoza

et al., 1996; Table 1), a purine salvage enzyme. The data are

reasonably complete (Table 1) and represent a typical situa-

tion in macromolecular crystallography. In this situation, one

would not expect signi®cant problems with truncation artifacts

and would expect the difference Fourier and the RSR maps to

be fairly similar. An examination of the difference Fourier and

the RSR maps (Fig. 1) shows that, indeed, the two methods

lead to similar maps, and that they are each clear and easy to

interpret.

Cathepsin S. The second example used data from cathepsin

S, a cysteine protease that plays an important role in the

processing of MHC class II (McGrath et al., 1998). Only one

data-quality crystal of cathepsin S was obtained and the

resulting 2.5 AÊ data set was signi®cantly and systematically

incomplete, with a large cone of data missing around the l axis

(Figs. 2a,b) (McGrath et al., 1998; Table 1). The corresponding

difference Fourier maps are very streaky along the Z direction

and have areas of missing and/or spurious electron density

(Fig. 3). The elongated density along Z is an inevitable

consequence of the missing data. However, the missing density

as well as some of the spurious density are probably the

consequence of Fourier artifacts.

Fig. 3 shows an example of both the Fourier and RSR maps

in the area of the cathepsin S active site. There are clear

problems with both maps, including both missing and spurious

densities. As mentioned above, most of these errors are

intrinsically linked to the missing cone of data. Although a

comparison of the maps is necessarily subjective, the RSR map

seems better in that there are fewer spurious connections,

leading to a map that is easier to trace. Interestingly, the errors

in the two maps often occur in different places. This suggests

that the crystallographer ®tting the density would bene®t from

looking at both maps.

4. Discussion

As shown above, it is possible to calculate a map by searching

for electron density that agrees with the diffraction data.

Under certain circumstances, this inverse method has advan-

tages over a direct transform of the data; the biggest advan-

tage lies in its ability to handle problems with the data that

would ordinarily give rise to Fourier artifacts. When Fourier

transforming structure factors, any missing data will give rise

to spurious electron density. These artifacts are especially

noticeable when blocks of data are missing, which happens

when an incomplete data set is collected or when low-reso-

lution data are not included in the Fourier transform calcu-

lation.

The root of these artifacts is that, when carrying out a

Fourier transform, there is no difference between a missing

structure factor and a structure factor with an amplitude of 0.

This is not the case when the maps are computed using the

inverse method. In the inverse case, the maps are prepared by

minimizing a cost function obtained by comparing Fc's from

the model with a given set of Fo's. If a subset of the Fo's is

missing, neither it nor the corresponding Fc's is included in the

calculation. Thus, the maps are not biased by the missing data.

A second, probably less signi®cant, bene®t of the inverse

method as we have implemented it is that non-negativity of

the electron density is enforced throughout the map. The

incorporation of this constraint acts as a density-modi®cation

procedure, effectively improving the phases.

A possible caveat to the RSR method is that it relies on a

minimization procedure that could suffer from convergence

problems or that could converge on a false minimum.

However, monitoring the cost function provides a way of

determining whether the minimization procedure has led to a

solution that is far from the global minimum. We have never

seen any evidence of convergence problems or of convergence

on local minima.

In summary, we have presented an inverse method of

preparing electron-density maps. Under certain conditions,

there is reason to believe that this method is less susceptible to

artifacts than the more conventional difference Fourier

method. Preparing an RSR map can be performed in an

almost automated way with the use of a script that calls both

EDEN and the CCP4 programs. EDEN can be obtained from

the authors.
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Table 1
Data statistics.

HGXPRTase Cathepsin S

Space group P21 R3
Cell parameters [a, b, c (AÊ )] 48.8, 74.7, 55.3,

� = 110.8�
107.61, 107.61, 105.19

Resolution range (AÊ ) 100±1.9 100.0±2.5
Number of observations 97259 23957
Number of unique

re¯ections
27314 10991

Completeness (%)
All data 91.2 71.0
Highest resolution shell 55.6 (1.96±1.9AÊ ) 65.0 (2.6±2.5AÊ )

Rsym(I)* (%) 6.3 9.7


